Ethical Implications of Artificial Intelligence: A Systematic Review of Challenges and Solutions

Authors

  • Prof. Mehak Gupta

Abstract

Artificial Intelligence (AI) has transformed industries, reshaping decision-making processes, automation, and human interactions. However, ethical concerns, including bias, transparency, accountability, and privacy, pose significant challenges to AI deployment. This review explores key ethical issues in AI, categorizing them into fairness, explainability, regulatory compliance, and societal impact. We analyze existing frameworks, mitigation strategies, and policies designed to ensure ethical AI development. The paper further discusses emerging ethical risks in AI-driven decision-making, emphasizing the need for interdisciplinary collaboration to establish robust governance mechanisms. The review concludes with recommendations for future research to create a balanced approach to AI ethics.

References

Whig, P., & krishna Adusumilli, S. B. (2024). Leveraging AI and Machine Learning for Optimizing Supply Chain Management in Healthcare: A Predictive and Prescriptive Approach. International Scientific Journal for Research, 6(6).

Adusumilli, S. B. K. Mitigating Cybersecurity Risks in Embedded Systems A Software-First Approach.

Nikhila S, Pavitha U.S, Krutthika H.K (2014). Face recognition using Wavelet transforms. International Journal of Advanced research in Electrical, Electronics and Instrumentation Engineering IJAREEIE Vol-3, Issue-1.

Nikhila S, Pavitha U.S, Krutthika H.K (2014). Face recognition using Wavelet transforms. International Journal of Advanced research in Electrical, Electronics and Instrumentation Engineering IJAREEIE Vol-3, Issue-1.

Chintala, S. (2024). Strategies for Enhancing Data Engineering for High Frequency Trading Systems. International IT Journal of Research, ISSN: 3007-6706, 2(3), 1-10.

Dodda, S., Chintala, S., Kanungo, S., Adedoja, T., & Sharma, S. (2024). Exploring AI-driven Innovations in Image Communication Systems for Enhanced Medical Imaging Applications. Journal of Electrical Systems, 20(3s), 949-959.

Adusumilli, S. B. K. (2023). TOWARDS ENERGY-EFFICIENT AIML INFERENCE ON EDGE DEVICES SOFTWARE SOLUTIONS AND CHALLENGES. Journal of Engineering Sciences, 14(11).

Whig, P., & Adusumilli, S. B. K. (2023). Enhancing Healthcare Delivery Through AI-Driven Supply Chain Innovations: A Case Study Perspective. International Transactions in Artificial Intelligence, 7(7).

Chintala, S. Analytical Exploration of Transforming Data Engineering through Generative AI‖. International Journal of Engineering Fields, ISSN, 3078-4425.

Narani, S. R., Ayyalasomayajula, M. M. T., & Chintala, S. (2018). Strategies For Migrating Large, Mission-Critical Database Workloads To The Cloud. Webology (ISSN: 1735-188X), 15(1).

Chintala, S., Jindal, M., Mallreddy, S. R., & Soni, A. (2024). Enhancing Study Space Utilization at UCL: Leveraging IoT Data and Machine Learning. Journal of Electrical Systems, 20(6s), 2282-2291.

Ayyalasomayajula, M. M. T., Chintala, S., & Narani, S. R. INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING.

Pillai, S. E. V. S., & Polimetla, K. (2024, February). Enhancing Network Privacy through Secure Multi-Party Computation in Cloud Environments. In 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS) (pp. 1-6). IEEE.

Pillai, S. E. V. S., Polimetla, K., Avacharmal, R., & Perumal, A. P. (2022). Mental health in the tech industry: Insights from surveys and NLP analysis. Journal of Recent Trends in Computer Science and Engineering (JRTCSE), 10(2), 22-33.

Chintala, S., Kunchakuri, N., Kamuni, N., & Dodda, S. (2024, October). Developing an Adaptive Educational Chatbot for Personalized SQL Tutoring. In 2024 International Conference on Computing, Sciences and Communications (ICCSC) (pp. 1-5). IEEE.

Dodda, S., Chintala, S., Kunchakuri, N., & Kamuni, N. (2024, October). Enhancing Microservice Reliability in Cloud Environments Using Machine Learning for Anomaly Detection. In 2024 International Conference on Computing, Sciences and Communications (ICCSC) (pp. 1-5). IEEE.

Chintala, S. (2023). Improving Healthcare Accessibility with AI-Enabled Telemedicine Solutions. International Journal of Research and Review Techniques, 2(1), 75-81.

Adusumilli, S. B. K., Damancharla, H., & Metta, A. R. (2021). AI-Powered Cybersecurity Solutions for Threat Detection and Prevention. International Journal of Creative Research In Computer Technology and Design, 3(3).

Adusumilli, S. B. K., Damancharla, H., & Metta, A. R. (2020). Leveraging AI for Real-Time Sentiment Analysis in Social Media Networks. International Numeric Journal of Machine Learning and Robots, 4(4).

Kamuni, N., Dodda, S., Chintala, S., & Kunchakuri, N. (2024, October). Optimizing Machine Translation: A Benchmarking Suite for Efficiency and Quality Enhancement. In 2024 International Conference on Computing, Sciences and Communications (ICCSC) (pp. 1-7). IEEE.

Adusumilli, S., Damancharla, H., & Metta, A. (2020). Machine Learning Algorithms for Fraud Detection in Financial Transactions. International Journal of Sustainable Development in Computing Science, 2(1). Retrieved from https://www.ijsdcs.com/index.php/ijsdcs/article/view/639

Adusumilli, S., Damancharla, H., & Metta, A. (2021). Deep Learning Techniques for Image Recognition in Autonomous Vehicles. (2021). International Meridian Journal, 3(3). https://meridianjournal.in/index.php/IMJ/article/view/94

Krutthika Hirebasur Krishnappa, & Nithin Vajuvalli Narayana Gowda (2023). Dictionary-based PLS approach to pharmacokinetic mapping in DCE-MRI using Tofts model. 8th Edition ICT4SD International ICT Summit & Awards, Vol.3, 219–226. https://doi.org/10.1007/978-981-99-4932-8_21

Published

2025-01-01

How to Cite

Gupta, P. M. (2025). Ethical Implications of Artificial Intelligence: A Systematic Review of Challenges and Solutions. Transactions on Recent Developments in Health Sectors, 8(8). Retrieved from https://isjr.co.in/index.php/TRDHS/article/view/359

Issue

Section

Articles