Mechanisms of Isometric Contraction in Skeletal Muscle: Molecular and Cellular Perspectives

Authors

  • Prof. Chan Young

Abstract

Isometric contraction is a fundamental type of muscle activity where the muscle generates force without changing length. This paper delves into the molecular and cellular mechanisms underlying isometric contractions in skeletal muscle, focusing on the role of actin-myosin cross-bridge cycling. By examining the interactions of contractile proteins, calcium ions, and ATP in the sarcomere, the study provides insights into how force is produced and maintained during isometric contraction. It also explores the regulation of contractile force through intracellular calcium handling and the impact of neural activation. Understanding these mechanisms offers potential applications in muscle performance optimization and treatment of muscle-related disorders.

References

Huxley, A. F. (1957). Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry, 7, 255-318.

Jones, D. A., & Rutherford, O. M. (1987). Human muscle strength training: The effects of three different regimens and the nature of the resultant changes. Journal of Physiology, 391(1), 1-11. https://doi.org/10.1113/jphysiol.1987.sp016717

Kawakami, Y., Ichinose, Y., & Fukunaga, T. (1998). Architectural and functional features of human triceps surae muscles during contraction. Journal of Applied Physiology, 85(2), 398-404. https://doi.org/10.1152/jappl.1998.85.2.398

Kubo, K., Kanehisa, H., & Fukunaga, T. (2002). Effects of resistance and stretching training programs on the viscoelastic properties of human tendon structures in vivo. Journal of Applied Physiology, 92(2), 595-601. https://doi.org/10.1152/japplphysiol.00658.2001

McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). Exercise Physiology: Nutrition, Energy, and Human Performance (7th ed.). Lippincott Williams & Wilkins.

Muthu, P., Mettikolla, P., Calander, N., Luchowski, R., Gryczynski, I., Gryczynski, Z., ... & Borejdo, J. (2010). Single molecule kinetics in the familial hypertrophic cardiomyopathy D166V mutant mouse heart. Journal of molecular and cellular cardiology, 48(5), 989-998.

Krupa, A., Fudala, R., Stankowska, D., Loyd, T., Allen, T. C., Matthay, M. A., ... & Kurdowska, A. K. (2009). Anti-chemokine autoantibody: chemokine immune complexes activate endothelial cells via IgG receptors. American journal of respiratory cell and molecular biology, 41(2), 155-169.

Mettikolla, P., Calander, N., Luchowski, R., Gryczynski, I., Gryczynski, Z., Zhao, J., ... & Borejdo, J. (2011). Cross-bridge kinetics in myofibrils containing familial hypertrophic cardiomyopathy R58Q mutation in the regulatory light chain of myosin. Journal of theoretical biology, 284(1), 71-81.

Mettikolla, P., Calander, N., Luchowski, R., Gryczynski, I., Gryczynski, Z., & Borejdo, J. (2010). Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence. Journal of Biomedical Optics, 15(1), 017011-017011.

Mettikolla, P., Luchowski, R., Gryczynski, I., Gryczynski, Z., Szczesna-Cordary, D., & Borejdo, J. (2009). Fluorescence lifetime of actin in the familial hypertrophic cardiomyopathy transgenic heart. Biochemistry, 48(6), 1264-1271.

Mettikolla, P., Calander, N., Luchowski, R., Gryczynski, I., Gryczynski, Z., & Borejdo, J. (2010). Observing cycling of a few cross‐bridges during isometric contraction of skeletal muscle. Cytoskeleton, 67(6), 400-411.

Muthu, P., Mettikolla, P., Calander, N., & Luchowski, R. 458 Gryczynski Z, Szczesna-Cordary D, and Borejdo J. Single molecule kinetics in, 459, 989-998.

Borejdo, J., Mettikolla, P., Calander, N., Luchowski, R., Gryczynski, I., & Gryczynski, Z. (2021). Surface plasmon assisted microscopy: Reverse kretschmann fluorescence analysis of kinetics of hypertrophic cardiomyopathy heart.

Mettikolla, Y. V. P. (2010). Single molecule kinetics in familial hypertrophic cardiomyopathy transgenic heart. University of North Texas Health Science Center at Fort Worth.

Mettikolla, P., Luchowski, R., Chen, S., Gryczynski, Z., Gryczynski, I., Szczesna-Cordary, D., & Borejdo, J. (2010). Single Molecule Kinetics in the Familial Hypertrophic Cardiomyopathy RLC-R58Q Mutant Mouse Heart. Biophysical Journal, 98(3), 715a.

Published

2022-08-18

How to Cite

Young, P. C. (2022). Mechanisms of Isometric Contraction in Skeletal Muscle: Molecular and Cellular Perspectives. Transactions on Recent Developments in Health Sectors, 5(5). Retrieved from https://isjr.co.in/index.php/TRDHS/article/view/242

Issue

Section

Articles