Reinforcement Learning for Personalized Education in Adaptive Learning Systems

Reinforcement Learning for Personalized Education in Adaptive Learning Systems

Authors

  • Manoj Chowdary Vattikuti

Abstract

Personalized education is transforming traditional learning paradigms by tailoring content to individual needs. This paper proposes a reinforcement learning-based adaptive learning system that dynamically adjusts educational content and strategies based on learner performance and engagement. The system uses a reward mechanism to optimize learning paths, ensuring that each learner achieves their goals efficiently. Experiments on e-learning platforms demonstrate significant improvements in knowledge retention and user satisfaction compared to traditional static systems. The study highlights the potential of reinforcement learning to enhance educational outcomes and make learning experiences more engaging and effective.

References

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2021). Leveraging Cloud Computing for Efficient Data Processing in SAP Enterprise Solutions. International Journal of Machine Learning for Sustainable Development, 3(4).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2021). Machine Learning in SAP Workflows: A Study of Predictive Analytics and Automation. Transactions on Latest Trends in Artificial Intelligence, 2(2).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2021). Machine Learning Models for Optimizing SAP-Based Data Processing in Cloud Environments. International Journal of Sustainable Development in Computing Science, 3(3).

Ranjan, P., & Dahiya, S. (2021). Advanced threat detection in api security: Leveraging machine learning algorithms. International Journal of Communication Networks and Information Security, 13(1).

Dhaiya, S., Pandey, B. K., Adusumilli, S. B. K., & Avacharmal, R. (2021) Optimizing API Security in FinTech Through Genetic Algorithm based Machine Learning Model.

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2023). AI-Driven Business Analytics Framework for Data Integration Across Hybrid Cloud Systems. Transactions on Latest Trends in Artificial Intelligence, 4(4).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2023). Integrating AI and Cloud Computing for Scalable Business Analytics in Enterprise Systems. International Journal of Sustainable Development in Computing Science, 5(3).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2023). Enhancing Data Integration Using AI and ML Techniques for Real-Time Analytics. International Journal of Machine Learning for Sustainable Development, 5(3).

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations (ICLR) (pp. 1-15).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097-1105).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. In Proceedings of the International Conference on Learning Representations (ICLR).

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT Press.

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2021). Leveraging Cloud Computing for Efficient Data Processing in SAP Enterprise Solutions. International Journal of Machine Learning for Sustainable Development, 3(4).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2021). Machine Learning in SAP Workflows: A Study of Predictive Analytics and Automation. Transactions on Latest Trends in Artificial Intelligence, 2(2).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2021). Machine Learning Models for Optimizing SAP-Based Data Processing in Cloud Environments. International Journal of Sustainable Development in Computing Science, 3(3).

Ranjan, P., & Dahiya, S. (2021). Advanced threat detection in api security: Leveraging machine learning algorithms. International Journal of Communication Networks and Information Security, 13(1).

Dhaiya, S., Pandey, B. K., Adusumilli, S. B. K., & Avacharmal, R. (2021) Optimizing API Security in FinTech Through Genetic Algorithm based Machine Learning Model.

Published

2023-10-13

How to Cite

Vattikuti, M. C. (2023). Reinforcement Learning for Personalized Education in Adaptive Learning Systems. International Transactions in Machine Learning, 5(5). Retrieved from https://isjr.co.in/index.php/ITML/article/view/293

Issue

Section

Articles
Loading...