Predictive Analytics for Sustainable Resource Management in Heritage Sites
Abstract
The effective management of resources in heritage sites is crucial for ensuring their preservation, sustainability, and the satisfaction of visitors. This research paper delves into the application of predictive analytics and AI algorithms for efficient resource management in heritage sites. By harnessing the power of AI, this study aims to explore the potential benefits of predictive analytics in optimizing resource allocation and enhancing sustainability practices. The paper investigates how AI algorithms can be employed to predict visitor flows, energy consumption patterns, and waste management requirements in heritage sites. By accurately forecasting these key aspects, heritage site managers can make informed decisions and implement proactive measures to optimize resource utilization, minimize waste, and reduce environmental impact. The paper further discusses the implications and potential challenges of implementing AI-based predictive analytics in resource management for heritage sites. Through this research, we aim to contribute to the development of effective strategies that facilitate sustainable practices and improve resource management in heritage sites, ensuring their preservation for future generations.
References
A. Kumar, S. Gupta, N. Yathiraju, S. Bose Chakraborty, K. Dodda and D. Verma, "The Novel E-Way of Identifying the Face Mask and To Ware the System in the Crowd Management System," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2023, pp. 999-1002, doi: 10.1109/ICACITE57410.2023.10182427.
R. Pandey, S. Saha, N. Yathiraju, I. S. Abdulrahman, R. Nittala and V. Tripathi, "Integration of RFID and Image Processing for Surveillance ABased Security System," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2023, pp. 380-384, doi: 10.1109/ICACITE57410.2023.10182987.
M. Nagaraju Naik, A. Kaur, N. Yathiraju, S. Das and K. Pant, "Improved and Accurate Face Mask Detection Using Machine Learning in the Crowded Places," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2023, pp. 572-576, doi: 10.1109/ICACITE57410.2023.10182567.
N. Yathiraju, P. Raman, R. Madala, P. Surgonda Patil, A. Kumar and S. Ashwin, "Research and Innovation to Market Development: Artificial Intelligence in Business," 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, 2023, pp. 1-6, doi: 10.1109/ICONSTEM56934.2023.10142715.
N. Yathiraju, A. Sankar, S. Sandhiya, S. k. R, S. K and R. S, "Cardiac Disease Prediction for Heart Monitoring using Data Mining Techniques," 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC), Bengaluru, India, 2022, pp. 1282-1287, doi: 10.1109/IIHC55949.2022.10060047.
Yathiraju, N., & Mohapatra, A. (2023). "The Implications of IoT in the Modern Healthcare Industry post COVID-19," International Journal of Smart Sensor and Adhoc Network: Vol. 3: Iss. 4, Article 3. DOI: 10.47893/IJSSAN.2023.1226
Yathiraju, N., & Dash, B. (2023). Gamification Of E-Wallets With The Use Of Defi Technology-A Revisit To Digitization In Fintech. International Journal of Engineering, Science, 3(1).
Yathiraju, N., & Dash, B. (2023). BIG DATA AND METAVERSE REVOLUTIONIZING THE FUTURISTICFINTECH INDUSTRY,” International Journal of Computer Science & Information Technology(IJCSIT) Vol 15, No.1, 2023. DOI: 10.5121/ijcsit.2023.15101
Ahammad, D. S. H. ., & Yathiraju, D. . (2021). Maternity Risk Prediction Using IOTModule with Wearable Sensor and Deep Learning Based Feature Extraction andClassification Technique. Research Journal of Computer Systems and Engineering,2(1), 40:45
Whig, P. (2019a). A Novel Multi-Center and Threshold Ternary Pattern. International Journal of Machine Learning for Sustainable Development, 1(2), 1–10.
Whig, P. (2019d). Exploration of Viral Diseases mortality risk using machine learning. International Journal of Machine Learning for Sustainable Development, 1(1), 11–20.
Whig, P., & Ahmad, S. N. (2011a). On the performance of ISFET-based device for water quality monitoring. Int’l J. of Communications, Network and System Sciences, 4(11), 709.
Whig, P., & Ahmad, S. N. (2012a). A CMOS integrated CC-ISFET device for water quality monitoring. International Journal of Computer Science Issues, 9(4), 1694–1814.
Whig, P., & Ahmad, S. N. (2012f). Performance analysis of various readout circuits for monitoring quality of water using analog integrated circuits. International Journal of Intelligent Systems and Applications, 4(11), 103.
Whig, P., & Ahmad, S. N. (2013a). A novel pseudo-PMOS integrated ISFET device for water quality monitoring. Active and Passive Electronic Components, 2013.
Whig, P., & Ahmad, S. N. (2014a). Development of economical ASIC for PCS for water quality monitoring. Journal of Circuits, Systems and Computers, 23(06), 1450079.
Whig, P., & Ahmad, S. N. (2014c). Simulation of linear dynamic macro model of photo catalytic sensor in SPICE. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.